If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5x^2-18x-1920=0
a = 5; b = -18; c = -1920;
Δ = b2-4ac
Δ = -182-4·5·(-1920)
Δ = 38724
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{38724}=\sqrt{4*9681}=\sqrt{4}*\sqrt{9681}=2\sqrt{9681}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-18)-2\sqrt{9681}}{2*5}=\frac{18-2\sqrt{9681}}{10} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-18)+2\sqrt{9681}}{2*5}=\frac{18+2\sqrt{9681}}{10} $
| x(x-10)-3(x-10)=0 | | 9+y÷3=6 | | 56=c-9 | | 7(4x-3)+3(18-5x)-3(4x+3)=-7 | | 28=2x+2(2-4) | | -2t+4=10 | | c+(-90)=-58 | | -4y-2=-6 | | 16.42(b+5.88)=-2.69 | | 2(x+2)+2(x+2)=2(3x+2)+2(x-1) | | 5x(x-2)-1(x-2)=0 | | -104=10-6x | | c-7+9=11 | | 3/7x-5/12=-4/7-3/4 | | 1/5x+1=2 | | Y=5-|2x-5| | | 3/7x-5/12=-4/7-4/4 | | 24a+20=18a | | 8x-4/2=6 | | 6r+2=48r+9 | | (x-52)=180 | | 9(3x-4)=18 | | 3/4x+1=5-1/4x | | -2(9y-9)+4y=2(-5+y)-9y | | -7y+6(-3y-)=-64-3y | | 400+x=900 | | 3c(6-2c)=27 | | -7(-4x-8)=-9(x+2) | | 7d=d+6d | | 0.10c+0.25(c+3)=10.90 | | 4x216=0 | | 2c^2-9c=-5 |